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Abstract

Advanced LIGO and Virgo detected 10 binary black holes (BBHs) in their first two observing runs (O1 and O2).
Analysis of these events found evidence for a dearth of BBHs with component masses greater than ~45 M., as
would be expected from palr-mstablhty supemovae. Meanwhile, a standalone analysis of the merger GW170729
found its primary mass to be m; = 51.21%2 M., which appears to be in contradiction with the existence of a limit
at ~45 M. In this work, we argue that the masses of individual events can only be evaluated with reference to the
full population. When GW170729 is analyzed jointly with the remaining detections, its inferred primary mass
tightens considerably, to m; = 38.91’1? M. In the presence of noise, apparent outliers in the detected distribution
are inevitable. We discuss methods of distinguishing between statistical fluctuations and true population outliers
using posterior predictive tests. Applying these tests to O1 and O2, we find that the 10 detections are consistent
with even the simplest power-law plus maximum-mass model considered by the LIGO-Virgo Collaboration,
supporting the claim that GW 170729 is not a population outlier. We also provide non-parametric constraints on the
rate of high-mass mergers and conservatively bound the rate of mergers with m; > 45 M_, at 2.8734% of the total
merger rate. After 100 detections like those of O1 and O2 from a population with a maximum primary mass of
45 M., it would be common for the most massive system to have an observed maximum-likelihood mass
my z 70 M@.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Gravitational wave astronomy (675);
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Astronomy data analysis (1858); Hierarchical models (1925)

1. Introduction

A major goal of gravitational-wave (GW) astronomy is to learn
about the formation and evolutionary mechanisms of binary black
hole (BBH) mergers, such as those detected by Advanced
LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015). There
are many proposed formation channels for BBHs, including
isolated evolution (Dominik et al. 2015; Belczynski et al. 2016a,
2016b; Eldridge & Stanway 2016; Woosley 2016; Stevenson
et al. 2017b; Kruckow et al. 2018; Spera et al. 2019), dynamical
formation (Hurley et al. 2016; Mapelli 2016; Rodriguez et al.
20164, 2018; Askar et al. 2017; Chatterjee et al. 2017; Samsing
2018; Di Carlo et al. 2019; Zevin et al. 2019), and primordial
origin (Bird et al. 2016; Garcia-Bellido 2017), and if several
formation channels are active at once, the population of merging
BBHs may consist of distinct sub-populations. These sub-
populations may differ in their shape of the mass distribution
and spin distribution, as well as the merger rate (and its evolution
with redshift).

Previous studies have explored methods of distinguishing
between different formation channels using GW observations
of BBHs, including fitting for the mixture fraction (or
branching ratio) between various sub-populations (Stevenson
et al. 2015, 2017a; Rodriguez et al. 2016b; Vitale et al. 2017b;
Zevin et al. 2017; Bouffanais et al. 2019). One proposed sub-
population includes second-generation mergers, which occur
when at least one of the component BHs in a binary is itself the
product of a previous merger. Second-generation BHs are
expected to have a characteristic distribution of dimensionless
spin magnitudes that peaks at a ~ 0.7 and a mass distribution

that extends into the “pair-instability” mass gap starting at
~40-70 M, (Fishbach et al. 2017; Gerosa & Berti 2017,
Rodriguez et al. 2018). On the other hand, “first-generation”
BHs that form directly from stellar collapse are expected to
avoid the mass range between ~50 and 120 M. When a stellar
core lies in this mass range, it is predicted to explode as a
(pulsational) pair-instability supernova, and either leave behind
no remnant, or lose mass sufficiently so that the BH remnant
lies below the gap (Fowler & Hoyle 1964; Rakavy et al. 1967;
Heger & Woosley 2002). The spins of BHs formed from stellar
collapse are less certain (Miller & Miller 2015; Belczynski
et al. 2017; Fuller & Ma 2019).

Second-generation mergers are possible (and generally
expected to occur) exclusively in dense stellar environments
such as globular clusters; therefore, the existence of this
population is an important discriminator between dynamical
and isolated formation. An additional proposed sub-population
consists of gravitationally lensed GW signals, for which the
lensing magnification causes a bias in the inferred luminosity
distance and the unredshifted, source-frame masses if not
properly accounted for (Cao et al. 2014). Therefore, gravita-
tionally lensed events, even if they originate from the same
formation channel as the unlensed events, would appear as a
sub-population of erroneously high-mass, low-distance
events (Dai et al. 2017; Broadhurst et al. 2018; Ng et al.
2018; Oguri 2018; Hannuksela et al. 2019).

The LIGO-Virgo Collaboration (LVC) detected 10 BBHs in
its first two observing runs (Abbott et al. 2019a). With these 10
detections, Abbott et al. (2019b) fit simple parameterized
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models to the mass, spin, and redshift distribution of the BBH
population, assuming that all detections belong to the same
population.” The assumption of a single population was
justified by a leave-one-out analysis, which shows explicitly
that excluding GW 170729, the most “unusual” event (in terms
of having the highest mass, spin, and distance), from the
analysis does not significantly impact the inferred mass, spin,
and redshift distributions at a level beyond the statistical
uncertainties. Kimball et al. (2020) and Chatziioannou et al.
(2019) also found that there is insufficient evidence to claim
GW170729 as a population outlier by specifically comparing
the hypothesis that it belongs to a population of second-
generation, as opposed to first-generation, mergers based on the
expected mass and spin distributions under the two scenarios.

In this paper we examine in more detail whether the assumed
single-population mass distribution is a good fit to the data
from the first 10 detections, with a focus on the inferred
“maximum mass,” or lower edge of the pair-instability mass
gap. We argue that there are no convincing outliers among the
Ol and O2 detections, implying that a single-component
population model is sufficient to fit the data. As the number of
detections increases, we expect standard statistical fluctuations
to produce individual events with significant posterior support
inside the so-called upper mass gap; GW170729 may be an
example of such a fluctuation. Additionally, we forecast the
masses of future detections based on the population of BBHs
from Ol and O2, and explore the masses that would be
required to identify a BBH detection as a true population
outlier. Such an outlier may belong to an alternative population
consisting of, e.g., second-generation mergers, or otherwise
indicate that the assumed population model provides an
insufficient description of the data. The methods discussed
here can be extended to classify any outliers, including in the
spin, mass-ratio, or redshift distribution.

The parametric models discussed above and used in Abbott
et al. (2019b) are designed to incorporate a high-mass feature
inspired by the predicted pair-instability mass-gap, whether it is
a sharp cut-off to the power law (Models A and B of Abbott
et al. 2019b) or a Gaussian component (Model C). To constrain
the rate of high-mass BBH mergers in a model-agnostic way,
we apply the non-parametric method of Mandel et al. (2017) to
the 10 BBHs from O1 and O2. This method models the mass
distribution as a binned histogram in the m;—m, plane, with a
smoothing prior on the bin heights. In contrast to the parametric
models, the non-parametric fit a priori prefers smoothness over
sharp features, providing a conservative upper limit on the rate
of high-mass mergers.

The remainder of the paper is organized as follows. In
Section 2, we demonstrate how a population analysis provides
updated inference on the event-level parameters, yielding a
tighter measurement on the masses of GW170729 in particular.
In Section 3, we use posterior predictive distributions to
evaluate the goodness-of-fit of a model to observations,
focusing on high-mass outliers. In Section 4, we apply the
non-parametric histogram model of Mandel et al. (2017) to the
10 LVC events and compare the inferred mass distribution to
the parametric inference. We conclude in Section 5. Additional
analysis details are provided in the Appendix.

5> We note that in addition to the LVC-published detections of Abbott et al.

(2019a), new BBH detections in the O1 and O2 data have been reported by
Venumadhav et al. (2019a, 2019b) and Nitz et al. (2019).
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2. Population Prior on Individual Events

A population analysis is concerned with fitting features that
are common across the population members; in this case, BBH
merger events. We assume that the event-level parameters {6;}
(e.g., the component masses of the BBH event i) follow a
probability distribution function p,,, (6A), where A are the
population-level hyperparameters (e.g., the power-law slope
of the primary mass distribution). A hierarchical Bayesian
analysis simultaneously fits for the event-level parameters 6;
and the population-level hyperparameters A from the data
(Hogg et al. 2010; Mandel 2010; Mandel et al. 2011). In the
presence of selection effects and measurement uncertainty, the
joint posterior probability distribution of the event-level
parameters {6;} and the population parameters A given the data
{d;} from N independent events is given by (Loredo 2004;
Mandel et al. 2019)

N L(d0)pyop O1)
(6;}, Al{di}) A Ly ,
PO AdD em @ 1T 20 Gyas

where 7(A) is the prior on the population hyperparameters,
L(d;|0;)) is the event-level likelihood, and Py.(f) is the
probability of detecting a piece of data from a merger with
true parameters 6, as discussed in detail below.

In a population analysis, we usually marginalize Equation (1)
over the event-level parameters 6; to recover the posterior of the
population parameters A. Meanwhile, when analyzing data from
an individual event (“parameter estimation,” or PE), the posterior
on the event-level parameters,

p(0ild;) o L(di|0)T(6)), 2)

ey

is typically calculated using a default uninformative prior 7(6;),
rather than a population prior p,, (6]A). The mass estimates in
Abbott et al. (2019a), for instance, are obtained using priors
that are flat in detector-frame component masses. Alternatively,
one can marginalize Equation (1) over the population-level
parameters A, and get a new posterior on the event-level
parameters for each detection. Therefore, by calculating a joint
posterior on the population-level and event-level parameters
simultaneously, a hierarchical Bayesian analysis in effect
replaces the default uninformative priors from PE with a
population prior, yielding an informed posterior on the event-
level parameters.

Since the first BBH detections, a variety of hierarchical
analyses have been carried out to fit the BBH mass, spin, and
redshift distributions to phenomenological parametric model-
s (Abbott et al. 2016a; Fishbach & Holz 2017; Kovetz et al.
2017; Fishbach et al. 2018; Talbot & Thrane 2018; Roulet &
Zaldarriaga 2019; Wysocki et al. 2019). In this work, we focus
on the population analysis of Abbott et al. (2019b), specifically
the mass distribution, which Abbott et al. fit according to three
power-law-based models: Models A, B, and C. Model A has
two free parameters: the power-law slope for the primary mass
distribution and the maximum mass, and fixes the minimum
mass to 5 M, and the conditional distribution for the secondary
mass to be flat between the minimum mass and m;. Model B is
a generalization of Model A with two additional parameters:
the minimum mass and the power-law slope of the secondary
mass (or equivalently, mass ratio) distribution as conditioned
on the primary mass. Model C generalizes Model B by tapering
the low- and high-mass ends of the mass function (as opposed
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Figure 1. Primary mass (left panel) and mass ratio (right panel) of the BBH event GW 170729 under the default (flat in detector-frame masses) prior (orange) vs. the
prior implied by the Model B population analysis of Abbott et al. (2019b). The population analysis strongly constrains the maximum mass of the population to
<50 M, and favors near-unity mass ratios, which implies that, if we believe the parametric model is a reasonable description of the population, the primary mass and
mass ratio of GW 170729 are relatively well-constrained. Alternatively, the analysis with the default prior, which ignores the rest of the detected population, ascribes a

high probability for an outlier value to the mass.

to the sharp cutoffs of Models A and B) and allowing a high-
mass Gaussian component on top of the power law in the
primary mass. For each model, one can use the posterior
samples for the population parameters A to recover the
population-informed posteriors for individual event parameters
0; according to Equation (1).°

In certain cases, the population analysis returns a noticeably
different posterior for single-event parameters compared to the
posterior returned from PE. For example, for the most massive
event of Ol and O2, GW170729, the population analysis
implies a much tighter prior on the masses compared to the
uninformative priors of PE. The population-informed posteriors
on m; and g for GW170729 under Model B are shown in
Figure 1.” The Model B population analysis implies that the
primary mass is m; = 38.97]3 M, and the mass ratio is g=
0957093 compared to m; = 51.271%2 M., and g = 0.637)37
under the default uninformative priors. Even under Model C,
which has a high-mass Gaussian component instead of the
sharp cutoff of Model B, we find that the population-informed
primary mass of GW170729 is m = 37.9773 M, Under either
model, the population analysis implies that the primary mass of
GW170729 is less than 50 M, at 99% credibility, in contrast to
the results with uninformative priors.

3. Evaluating Tension between Model and Data

The above section assumes that the full set of observations
can be adequately described by a given model, and it therefore
makes sense to impose population priors and recalculate the
posteriors on the parameters of each event. However, we often
want to explicitly check whether the model fits the data
sufficiently and whether the observations are consistent with
one another under the model. In this section, we detail various
methods of carrying out goodness-of-fit and outlier identifica-
tion tests, and apply them to the BBH mass distribution fits
from Abbott et al. (2019b).

5 The posterior samples on the population hyper-parameters from Abbott
et al. (2019b) are publicly available at https://dcc.ligo.org/LIGO-P1800324/
public and the PE samples for individual events from Abbott et al. (2019a) are
available at https://dcc.ligo.org/LIGO-P1800370/public.

We use the parameter estimation results derived using the IMRPhe-
nomPv2 (Khan et al. 2016) waveform approximant throughout. PE posteriors
and population results with the SEOBNRv3 (Pan et al. 2014) approximant are
available as well, and there are no significant differences between the two.

3.1. Definitions and Assumptions

In a hierarchical population analysis, there are three levels at
which we can perform a model goodness-of-fit/consistency
test. The highest level consists of the population parameters A
and their inferred values from the data. If fitting the population
model separately on different subsets of events yields poster-
iors on the population parameters that are in significant tension
with one another, one can conclude that the model does not fit
all events as a single population. An example of this test was
carried out for Model A of Abbott et al. (2019b) with a leave-
one-out analysis, in which the population hyper-parameters
were fit with and without GW170729. Comparing the poster-
iors on the hyper-parameters with and without GW170729
show that excluding GW170729 from the fit results in
statistically consistent posteriors, leading to the conclusion
that GW170729 is not a population outlier.

The second level of a hierarchical analysis consists of the
(true) event-level parameters {6;}. Following Abbott et al.
(2019b), we define the posterior population distribution as a
probability density function (pdf) on the true parameters 6 of an
(unobserved, and potentially unobservable) system that belongs
to the population, given the data we have already observed:

PO = [P @DPALDAA, 3)
where the posterior p(A|{d;}) is given by marginalizing
Equation (1) over the event-level parameters {Qi}[l\’:l of the N
detected events. The pdf on the true parameters 6 of a detection
must take into account selection effects by weighting each 6 by
the detectability of the data d that it would produce in our
detectors:

p(0, det|{di}) = p(0l{di}) Rt ()

= p(Ol{di}) fpt;iet(d)p(d|0)dd~ “)
Note that the first term outside of the integral above is the
posterior population distribution given by Equation (3). The term
p(d|6) takes into account the measurement uncertainty in going
from the true parameters of the system 6 to the data d, and the
term P, (d) accounts for the fact that only some pieces of data are
detectable. Throughout, we assume that the detectability of a piece
of data, Pi(d), is deterministic, meaning it is always O or 1,
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Figure 2. Left panel: posterior predictive distribution for the number of detections per observed primary mass bin during O1 and 02, based on the fits to Model A and
Model B using all 10 BBHs (blue and green lines) and the nine BBHs excluding GW 170729 (yellow). The gray error bars show the maximum-likelihood points and
90% credible intervals on the masses of each of the 10 BBHs; the vertical placement of these error bars is arbitrary. The observed mass is defined as the maximum
likelihood estimate of m;, and is predicted according to the synthetic detection and parameter estimation process described in the text. Right panel: cumulative
posterior predictive distribution, or the probability that an observed mass is less than m"*, inferred from the detections and the given population model, compared to
the empirical distribution function from the 10 detections in gray (with the gray points denoting the maximum likelihood m; estimates). The agreement between the
observations and each model can be quantified by the distances between the gray points and the colored curve of interest, as calculated in the text. The predictions of
the population model match the observations fairly well, and GW170729 does not appear to be an outlier even when excluding it from the calculation of the posterior

predictive distribution (yellow curve).

depending on whether the data pass a (known) detection
threshold; this is discussed in more detail in Appendix A. The
term Py, () also appears in Equation (1). Sometimes V7(0), the
sensitive spacetime volume to a system with parameters 6, appears
in place of Pae(f), as these terms are proportional to each other
assuming the merger rate is constant in comoving volume and
source-frame time. Given a collection of events with data {d;} and
a population model, we can calculate the above pdf for the true
parameters of detected events (Equation (4)). Comparing the true
parameters {6;} of the detected events (as inferred jointly with the
population hyperparameters via Equation (1)) against the posterior
predictive pdf p(6, det|{d;}) provides another measurement of
the consistency of the population model with the observations.
The third and final level of a hierarchical analysis consists of
the data; this is the level on which we will evaluate the
population fits for the remainder of this work. By folding in
measurement uncertainty as well as the detection efficiency, we
arrive at a probability distribution on the data d from a future
detection, rather than on the true parameters. We refer to this as
the posterior predictive distribution:
pd. detl{d) = [P @p@Op@)dDdo.  (5)
A detected piece of data d from a BBH merger is a timeseries
consisting of the GW signal h(f) which, assuming general
relativity, is fully described by the source parameters 6 and
detector noise n(f). Therefore, we shall identify the data d with
the set of observed (maximum-likelihood) source parameters
Oobs,» by which we mean the true source parameters offset by
some measurement noise: d = {n;°%, m,°%, 7%, ...} = Ops.
Once an event is detected, the PE analysis returns a posterior
pdf on the source parameters p(6|d) (Veitch et al. 2015). In
referring to the observed parameters 6, in this work, we mean
the maximum likelihood point-values as returned by PE.

8 The maximum-likelihood values do not correspond to the peak of the

posteriors shown for event parameters in Abbott et al. (2019a) because a
nonflat prior 7 (my, m,, z) is used. The default prior in the event-level analysis
is proportional to the square of the luminosity distance, which places more
weight at high z than a flat prior, so the maximum-likelihood source-frame
mass values are larger than the maximum a posteriori values.

Details of how we simulate mock GW data sets with realistic
measurement uncertainty in order to compute Py (d) and
p(d|9) are found in Appendix A.

We stress that noise fluctuations will generally cause us to
estimate erroneously large source-frame masses. A notable
consequence of the detection threshold is that near-threshold
sources are detectable only if a favorable noise fluctuation pulls
the observed signal-to-noise ratio (S/N) above the detection
threshold. Because the distance measurement correlates with
the observed S/N, the systematic shift to larger S/N caused
by the detection threshold implies that the observed redshift (as
inferred from the distance) tends to be systematically shifted
toward smaller values. This in turn implies that the observed
source-frame masses, which are inferred by un-redshifting the
detector-frame masses, are preferentially shifted toward larger
values.

Although extreme noise fluctuations are intrinsically rare,
they are statistically guaranteed to affect some fraction of
detections. The larger the sample of detections, the larger the
fluctuation it contains.

3.2. Application to the O1+02 Population
3.2.1. Posterior Predictive Goodness-of-fit

In this subsection, we calculate the posterior predictive mass
distribution for the BBH population from Ol and O2 and
explore whether the population models provide an adequate fit
to the 10 BBH observations. We focus on their primary masses,
and more specifically, the primary mass of GW170729.

The posterior predictive distribution (Equation (5)) for mf’bs,
given the events from Ol and O2 and the assumed mass
Models A and B from Abbott et al. (2019b), is shown in
Figure 2. We focus on Models A and B, the simple power-law
models, because they have fewer free parameters than Model
C, and we wish to check whether these few parameters
sufficiently fit the data. We show the posterior predictive
distributions as inferred from all 10 BBHs, as well as under
Model A excluding GW170729. The left panel in Figure 2
shows the expected number of detections per m,°* bin during
O1 and O2 according to the model; this is based on the inferred
merger rate together with the shape of the mass distribution.
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We note that although Model A (B) predicts a sharp cutoff at
Mupax = 41.6758 My (mpax = 40.87118 ML), and all three
models considered in Abbott et al. (2019b) predict that 99%
of BBHs have m; < 45 M., Model A (B) predicts that 18%
(20%) of detected systems have an observed primary mass
mP® > 45 M. This is because out of the underlying
population of BBHs, more massive systems are more likely
to be detected, and out of those that are detected, statistical
fluctuations can push the observed (maximum likelihood) ml"bs
to values that are oftentimes significantly larger than the true
m;. Recall that among detected sources, statistical fluctuations
are more likely to push the observed source-frame masses to
larger values than smaller values, because sources near
threshold are only detectable if a fluctuation increases their
observed S/N, leading to a smaller inferred redshift and a
larger inferred source-frame mass. The full likelihood distribu-
tion should still have nonzero support at the true value, but for
very large statistical fluctuations, the support at the true value
may be very small and difficult to resolve.

From Figure 2, one can visually compare the number and
observed masses of the O1 and O2 detections (gray errorbars)
to the model predictions; this serves as a posterior predictive
check that the model fits the data sensibly. The gray points at
the center of the errorbars denote the maximum likelihood rm,°**
for each event; these points are the values that, according to the
model, should be representative draws from the posterior
predictive distributions. (The errorbars denote the 90%
symmetric credible intervals from the full m, posteriors and
are shown only for reference.)

The right panel of Figure 2 shows the cumulative, normal-
ized versions of the posterior predictive distributions in the
right panel (the colored curves) compared to the empirical
distribution function (edf; the gray points). The edf is a
cumulative histogram of the maximum likelihood m, mf?s, for
each event i, defined as:

. 1 n .
Fam{™) = =32 1UR{" < m™), ©)
i

where n is the number of events and / is the indicator function
which evaluates to 1 if its argument is True and zero otherwise.

As seen in the right panel of Figure 2, the edf appears to
follow the posterior predictive cumulative probability distribu-
tions (cdfs) for Models A and B, with perhaps slightly more
low-mass and high-mass detections than predicted under the
simple power-law models. The relative lack of intermediate-
mass detections (and comparable abundance of detections at
the low- and high-mass ends of the mp,—#n,, range) can also
be seen in the fit to Model C (the tapered power law with a
high-mass Gaussian) of Abbott et al. (2019b). Under Model C,
the only model that allows for deviations from a pure power
law in m;, Abbott et al. (2019b) find that the data mildly prefer
a merger rate that decreases at intermediate m; and then rises
again at my; ~ 30 M, (see the top panel of their Figure 2).
Abbott et al. (2019b) conclude that this preference for a power-
law deviation is not statistically significant because all three
models A, B, and C predict distributions of m,; that overlap
within the 90% statistical uncertainties. Abbott et al. (2019b)
also report Bayes factors between all three models and find that
a deviation from a power law is preferred by a factor of
e ~ 7 although, as usual, the values of Bayes factors are
sensitive to the priors chosen for the model hyper-parameters.
Our posterior predictive checks for the pure power-law Models
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A and B do not rely on an explicit comparison to an alternative
model, but our conclusions agree with Abbott et al. (2019b)
that the observed m; distribution is consistent with these
power-law models well within the 90% level.

More quantitatively, the distance between the edf and the
cdfs predicted from the models as fit to the data is a measure of
“goodness-of-fit,” or how well each model explains the data.
This is the basis of the well-known Kolmogorov—Smirnov
(KS) (Kolmogorov 1933; Smirnov 1948) and Anderson—
Darling (AD) statistics (Anderson & Darling 1952).° Restrict-
ing ourselves only to the m; distribution, we compute the KS
and AD statistics as follows. We first construct a null
distribution by repeatedly drawing sets of 10 observations
from the posterior predictive distribution of interest and
calculating the KS and AD statistic for each set. Comparing
the KS and AD statistics for our set of 10 observations against
the statistics of the null distribution, we find that the KS
statistic between the edf and the Model B posterior predictive
cdf lies at 84% of the null distribution, while the AD statistic
lies at 79% of its null distribution. For Model A, the KS (AD)
statistic is at 87% (82%) of its null distribution. We also
compute these statistics between the edf for all 10 events and
the Model A posterior predictive cdf as inferred without
GW170729. This does not affect the statistics significantly,
with the KS statistic corresponding to 69% of the null
distribution and the AD statistic at 71% in this case, which
indicates that the observed primary mass of GW170729 is
consistent with the m; distribution as inferred without it.'% In
summary, Models A and B are all found to be consistent with
the observed population.

Note that the edf is not uniquely defined in two or more
dimensions, and Figure 2 shows only how the model fits the
observed m, distribution, ignoring all other parameters of BBH
systems including the mass ratio, spin, and redshift. However,
the edf-based test described above can be extended (non-
uniquely) to an arbitrary number of dimensions as long as the
algorithm for ordering the observations is fixed in advanced.
The null distribution can still be calculated according to this
fixed ordering algorithm and, if desired, a p-value can be
calculated to evaluate goodness-of-fit.

3.2.2. Quantifying Outliers

We now turn to the more specific issue of quantifying
whether a particular observation is an outlier with respect to
other events that make up the population. For example, in
order to investigate the degree of tension between a
particularly massive observation, such as GW170729, and
the maximum mass inferred from the population analysis, it is
useful to consider the posterior predictive distribution of the
maximum observed primary mass out of N detections,
max({mﬂobs}yzl), based on the data from the remaining

° The KS statistic is the maximum distance between the cdf of the model and

the edf derived from the data (or two edfs for two different data sets) while the
AD statistic is a weighted average of the distance between each point in the
sample and the cdf. The KS statistic is mainly sensitive to differences between
the centers of the two distributions while the AD statistic is more sensitive to
differences in the tails of the distribution (Stephens 1974).

10 Counterintuitively, the shift toward smaller KS and AD statistics seems to
indicate that the m; posterior predictive distribution as inferred from only nine
events actually provides a slightly better fit to the observed primary masses of
all 10 events; however, the shift in these statistics is not significant, and
illustrates that this is a simplified one-dimensional test that is only meant to
check consistency between data and model and not to properly fit a model.
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Figure 3. Posterior predictive distribution of the maximum observed mass out
of 10 detections as inferred from the detections and the population model of
interest (bold, solid colored curves). The observed mass refers to the maximum
likelihood m; value of a detected event as predicted according to a synthetic
detection and parameter estimation (PE) process (see the text). The thin orange
curves show mock PE posteriors for 50 random events drawn from the bold
orange curve, representing 50 examples of posteriors for the most massive 1,
that we expect to detect based on the fit to Model A from the nine detections
excluding GW170729. For comparison, the posterior for the primary mass of
GW170729 is shown (dashed black curve) with the maximum-likelihood value
(vertical dashed line). Visually, the GW 170729 m, posterior appears consistent
with the thin orange curves. Quantitatively, comparing its maximum-likelihood
value to the bold orange curve shows that the primary mass of GW170729 is
consistent with the population as inferred from the other nine events at the 86%
level.
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m:max({ml].obs} Jj= )

)

where the pdf in the integral is simply the posterior predictive
distribution. Equation (7) follows from the fact that given N
random draws X; from a fixed pdf p(x) with corresponding cdf
P(X; < x), the maximum draw Y will follow a cdf:

P(Y <x)=PX; < X)yienn = PX; < 0)N. (8)

The posterior predictive distributions for the maximum
observed mass out of 10 detections is shown in Figure 3.
The maximum-likelihood primary mass m > for GW170729
(vertical dashed line) is consistent at the 86% level with the
posterior predictive distribution on the maximum of 10 primary
mass observations, as inferred from Model A and the remaining
nine observations (orange solid curve). The light orange curves
show mock posteriors on m; for 50 events drawn from the solid
orange curve, and we can see that the m; posterior for
GW170729 (dashed black curve) looks like a typical observa-
tion. When using GW170729 itself in calculating this posterior
predictive distribution, its primary mass is consistent with
being the maximum of 10 observations at 69% under Model A
(blue curve) and 59% under Model B (green curve). Based on
this analysis, we conclude that there is no evidence for tension
between the primary mass of GW170729 and the remaining
nine observations under Models A and B, in agreement with
the leave-one-out analysis of Abbott et al. (2019b).
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Figure 4. Maximum mass we expect to observe as a function of number of

detections (blue), as inferred from the Model B fit to the 10 O1/02 detections

(which predicts the true my,, = 40.8:1‘,14'8 M, shown in orange). The observed

mass m* represents the maximum likelihood value that would be inferred for
the detected system, taking into account measurement uncertainty and selection
effects. The solid line denotes the median and dark and light bands denote the
68% and 95% credible intervals of the posterior predictive distribution. As the
number of detections increases, the largest noise fluctuation in the sample will
become more extreme. Furthermore, because of the S/N threshold, these noise
fluctuations statistically lead to larger inferred masses. The blue curves are well

fit by max m* ~ maxm; + o/2log(fN) with o ~ 17 M, (see the text); this
fit is shown by the black dashed line.

As the sample of BBH detections grows, we expect to
see more extreme statistical fluctuations, so that we observe
primary masses m % that are much higher than the true
maximum BH mass. In Figure 4, we show, as a function of the
number of detections, the most massive m,"* that we expect in
the sample, based on the fit to Model B with the 10 O1/02
detections. We find that our predictions for the maximum
observed mass after N detections matches expectations from
analytic Gaussian scaling. Assuming Gaussian observational
uncertainties of width o, with N detections, some fraction fN of
systems will have masses within 1o of the true maximum mass,
where f depends on the shape of the mass distribution
convolved with selection effects. The largest observed mass
will following a scaling max m°® ~ maxmy + o./2log(fN);
this scaling is observed empirically in Figure 4. In other words,
the most extreme noise fluctuation in a sample of size N is
typically observed at \/2log N standard deviations above its
true value. It would be common that by the time we have 100
detections, even if they are all described by Model B with a
sharp cutoff at mm,, = 40.8714% M., we will observe a system

with an apparent mass of m > ~ 70 M,

4. Non-parametric Constraints on the Rate of Mass-gap
Mergers

To explore the rate of high-mass mergers in a less parametric
way, we follow the binned-histogram analyses of Foreman-
Mackey et al. (2014) and Mandel et al. (2017). We model the
rate of BBH mergers on the two-dimensional m;—m, plane,
R(my, my) = a8 piecewise constant in 9 x 9
logarithmically spaced mass bins between 3 and 150 M.
The height of each mass bin R represents the merger rate in
that bin. We take the prior on the bin heights to be a squared-
exponential Gaussian process (GP) where the relative means f1;;
of the bin heights follow a fixed shape p(m;, m,;) and the
length scales in log(m;) and log(m,) are fit from the data (see
Appendix B for more details). We consider two different
shapes for the mean merger rate per bin in the GP prior: a
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Figure 5. Non-parametric constraints on the merger rate distribution for m;
from the binned histogram model under the two shape priors (flat-in-log prior
in blue and power-law prior in orange). The solid lines denote the median rate
and the dark and light shaded bands denote 68% and 95% symmetric credible
intervals. In green we show the merger rate as a function of m; for the
parametric mass distribution Model B; this model includes a maximum mass
cutoff as one of the parameters. In the low-mass region m; < 45 M., the non-
parametric model under both priors agrees with the parametric model. Because
of the lack of detections at high masses, the parametric Model B infers a tight
constraint on mpy,, and the merger rate falls to zero, while the nonparametric
model attempts to extrapolate smoothly to high masses under strong influence
of the prior.

“power-law” shape prior and “flat-in-log” shape prior. These
are motivated by the two fixed-parameter models that the LVC
used to calculate BBH merger rates in O1 and O2 (Abbott et al.
2016a, 2019a). In the power-law shape prior, we have
~2.35
ny
p(my, my) X ————, ©)
my — Muin
where my;, = 3 M. The flat-in-log shape prior is simply
1

mniy

p(my, my) o (10)
Figure 5 shows the merger rate R(m;) as inferred under the
two different priors, where

R(my) = f3 " R(my, my)dms, an

For comparison we also show the results from the parameter-
ized Model B fit. We note that in the range m; < 45 M., the
inferred merger rates R(m,;) agree between all three models:
the two shape priors in the nonparametric model as well as the
parametric power-law model. (The difference for m; < 5 M, is
due to the prior on my, > 5 M for Model B, while the
lowest-mass bin in the nonparametric model starts at 3 M..)
Beyond ~45 M, the merger rate inferred under Model B drops
sharply due to the m,,x parameter, whose inferred value
closely follows the mass of the most massive observed
system (Fishbach & Holz 2017). The binned model, on the
other, does not have a mp,, parameter that lets the rate fall to
zero, and instead has a prior that strongly favors smooth
variations of the merger rate from mass bin to mass bin. In the
mass bins with m; 2 45 M., where there are no detections, the
posterior on the merger rate smoothly transitions to following
the prior on the bin heights. This is visible in Figure 5 as the
merger rates R (m;) inferred under the two different priors (blue
and orange bands) start to diverge from one another at
my 2 45 M, and the uncertainty for each one grows as well.
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This is a consequence of the GP smoothing prior. After enough
detections, if the absence of high-mass events continues, the
likelihood will overcome the smoothing prior and the posterior
will reveal a sharp drop-off in the merger rate in the binned
analysis, independently of the prior on the bin heights. This
was demonstrated by Mandel et al. (2017) with simulated data
in the context of the putative low-mass gap between the binary
neutron star and BBH population. With only 10 detections, the
binned model provides a conservative upper limit on the rate of
mergers with 45 M, < my < 150 M, under the prior that the
merger rate should not vary sharply between neighboring
mass bins.

Under the flat-in-log prior, we infer the merger rate in the
mass range 45 M., < m; < 150 M, to be 3.027338" Gpc
yr ' (90% equal-tailed credible interval), or 1.797%3% Gpc >
yr ' under the power-law prior. We infer the total merger rate
over the 3 My, < m; < 150 M,, range to be 42.50%5%13 Gpc
yr ! with the flat-in-log shape prior or 65.58"19%3* Gpc > yr™!
with the power-law shape prior, implying that the rate of
mergers with m; > 45M,, makes up 7.6% 25> (flat-in-log prior)
or 2.8% 34 (power-law prior) of the total merger rate. This is to
be compared to the parametric models of Abbott et al. (2019b),
which all predict that less than 1% of mergers have
my > 45 M. Unlike the parametric models with a maximum
mass parameter, the binned-histogram model does not allow
the high-mass merger rate to drop all the way to zero. The
advantage of the nonparametric constraints is that, if there were
a secondary population of BBH mergers that does not respect
the maximum mass feature of the parameterized mass models
(consisting, for example, of second-generation mergers that
occupy the pair-instability mass gap), we still expect their
merger rate to respect these nonparametric limits.

5. Conclusion

Focusing on the BBH mass distribution as inferred by
Abbott et al. (2019b), we have explored how individual events
fit into a population analysis, especially in the presence of
measurement uncertainty and selection effects. We have
presented simple posterior predictive/goodness-of-fit checks
to show consistency between the O1/02 events and the power-
law mass distribution models of Abbott et al. (2019b). In
particular, GW170729, the most massive event of O1/02, is
not an outlier with respect to even the simplest power-law
model with a sharp high-mass cutoff. When folding in the
full information about the population, the primary mass of
GW170729 is inferred to be m; = 38.9%72 M as compared to
the inferred value under the uninformative PE priors,
my = 51.271%2 M. We argue that, as the number of detections
increases, the sample will contain statistical fluctuations even
more extreme than the one that likely gave rise to the observed
mass of GW170729. These statistical fluctuations will lead us
to preferentially overestimate the masses of individual events,
unless we infer the individual events’ masses jointly with the
full population. In doing so, it will also be necessary to verify
that the chosen population model fits the data sufficiently well.
Although the simple parameterized models provide adequate
fits to the BBH detections so far, we have presented
nonparametric fits to the mass distribution based on the GP-
regularized binned-histogram model of Mandel et al. (2017).
Under this model, we place conservative upper limits on the
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rate of mergers with 45 My < my < 150 M, and find that
these high-mass mergers make up at most 7.6%f§%8 of the total
merger rate in the range 3 M < m; < 150 M, for a flat-in-log
shape prior on the mass distribution, or 2.8% 3¢ of the total

merger rate for a power-law shape prior.
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Appendix A
Mock Observations

This section explains in greater detail how we calculate
selection effects and simulate measurement uncertainty for
mock observations. For a BBH with true parameters 6, we
follow the simple prescription of Fishbach et al. (2018) and
Farr et al. (2019) to assign realistic measurement uncertainty
and compute 6. Given the BBH’s source-frame masses,
spins, and redshift together with a power spectral density (PSD)
describing the noise of the detector, we can calculate the
optimal S/N pop of the source, which is the S/N that it would
have if it were optimally oriented face-on and directly overhead
of the detector (Chen et al. 2017). We assume a fixed
cosmology described by the best-fit Planck 2015 parameters
(Planck Collaboration et al. 2016) to interchange between
redshift and luminosity distance (Astropy Collaboration et al.
2013). We fix the PSD to the “Advanced LIGO Early High
Sensitivity” noise curve from Abbott et al. (2018), which is
representative for Ol and O2. We also fix BBH spins to zero in
this calculation, since they have a negligible effect on the S/N
calculation for population studies (Abbott et al. 2019b). An
isotropic distribution of sky positions and inclinations relative
to a detector yields a distribution of true S/Ns p in that
detector; this distribution can be summarized by the angular
projection term 0 < © = 2 < 1. The angular term © has a

Popt
known distribution (Finn &pChemoff 1993). Therefore, for a
BBH with intrinsic parameters {m,, m,, z}, we assign a single
extrinsic parameter © drawn from this distribution. These four
parameters together correspond to a true S/N p for the source.

Given {m;, my, z, ©, p} for a source, we assign measure-
ment uncertainty as follows. We expect that in stationary,
Gaussian noise, the matched-filler S/N p has unit varian-
ce (Allen et al. 2012). We first draw an observed S/N pps from
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a normal distribution centered at the true S/N p:
Pops = p + N (0, 1) (12)

where N (i, o) is a random number drawn from a normal
distribution with mean p and standard deviation . We assume
that sources are only detected if they pass an S/N threshold (in
a single detector) p,,,, > 8; this would be identical to the semi-
analytic selection effects calculation of Abbott et al. (2016a,
2016b, 2019b) were it not for the inclusion of the noise term
N (0, 1). To best approximate the mass measurement, we work
with the detector-frame (redshifted) chirp mass

3/5
M, = (14 ) (13)
(my + mp)'/
and symmetric mass ratio
mymy
= 14
! (my + my)? (1

The detector-frame chirp mass drives the leading-order GW
frequency evolution during the inspiral and is thus the best-
measured mass parameter for stellar-mass compact binary
sources. We assume that the uncertainties {ou, 0;, 0g} on the
measured parameters scale inversely with pgps, SO that

log M = log [M, + N (0, o/ Pope)]5 (15)
770bs = NT[0,0.25](77, 07]/pobs)5 (16)
eobs = NT[O'I](@, U(—)/pobs)' (17)

In the above expressions, N7[@/l(y, o) denotes a random
number drawn from the truncated normal distribution. From

M‘z’bs and 7., We calculate the detector-frame component
obs

masses m, . and mz"ES:
. M £ M? — 4nM?
mifs. = & (18)

2
for M = MS™ / n%gss . The observed redshift is inferred directly

(o]
from the remaining parameters, via the observed luminosity
distance dp:

did popy (1 + 2)m, (1 + 2)m$™, dria) Oobs
oy = Lot — 2 TP (19
obs

where djgq is an arbitrary fiducial luminosity distance (for given
detector-frame masses, the S/N of a source scales inversely
with its luminosity distance). The observed redshift z,s is
derived from d,,s by the cosmological redshift-luminosity
distance relation and, once this is known, we infer the source-

frame masses:

obs
mfy = 22 20)
I + Zobs

The observed values m,°%, m3™, 7., denote the maximum
likelihood values of the parameters as extracted from the GW
signal. To simulate full posterior distributions on these
parameters, we use Equations (12)—(19) as the likelihood for
the observed parameters given true values p, M., n, and ©. We
take samples on p, M,, n, and © from this likelihood and
convert the samples to the space m, ;, m, ;, dr, ©, on which we

bs
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wish to set a prior:
2
mpE (M1 2, M2z, dr, ©) x p(O)d. (21)

This matches the default PE prior used by LIGO/Virgo in the
Ol and O2 event analysis (Abbott et al. 2019a), where p(©) is
the true distribution from which the © values are drawn,
representing an isotropic distribution on the sky and source
inclination. The change of variables from p, M., n, © to
my ;, My, dr, © means we also have to divide out by the
induced prior, given by the Jacobian

dp dM,m) | OPop(mz, maz, diia)dsia
ddy, d(mi z, o) df
o lme — man(m m2,z)3/5'

(ml,z + m2,z)2

(22)

Once we reweight the m, , m, ;, dr, © samples by Equation (21)
divided by Equation (22), we can get posterior samples for the
source-frame parameters by converting to m;, m,, z, © space.

We tune the o parameters above to match the measurement
uncertainties on masses and redshifts found by Vitale et al.
(2017a) when simulating full PE on injected signals. Vitale
et al. (2017a) found that for BBHs detected by Advanced
LIGO/Virgo at design sensitivity, the relative uncertainty (at
the 90% credible interval) on the detector-frame masses is
typically ~40% and the relative uncertainty on redshift is
typically ~50%. However, for the majority of Ol and O2, only
the two (co-aligned) LIGO detectors were operational, imply-
ing a reduced ability for the network to constrain the
polarization of a source and break the distance—inclination
degeneracy, and worsened redshift constraints. We find that for
the Ol and O2 events, a more typical relative redshift
uncertainty is 70% (for a 90% credible interval relative to
the median value). We find that choosing oa = 0.08 0.
oy = 0.022p4..qn and og = 0.21p, . yields measurement
uncertainties that match the widths of the O1 and O2 credible
intervals and the expectations from Vitale et al. (2017a). We
use Py = & throughout, as discussed above. The measure-
ment uncertainty on © controls the measurement uncertainty on
z according to Equation (19). For simulating events for a three-
detector network at design sensitivity, we would use g = 0.15
to reflect the improved distance constraints of a three-detector
network with relative uncertainties of 50% rather than 70%. We
note that the measurement uncertainty on the source-frame
masses is a combination of the detector-frame mass uncertainty
and the absolute redshift uncertainty, which is largest for
sources at high redshift. Therefore, our predictions for
distributions of m,”* based on distributions of m, are sensitive
to assumptions regarding the underlying redshift distribution
and the network sensitivity, which together determine the
detected redshifts of the sources. The uncertainty in these
assumptions is subdominant to uncertainties in the population
model.

Appendix B
Binned Histogram Likelihood

In this appendix, we provide additional analysis details
regarding the binned-histogram fit to the mass distribution
(Section 4). The total posterior for the rate /R ;; in each mass bin,
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the parameters I governing the Gaussian process prior on the
bin heights, and the true masses of the detected events are given
by the inhomogeneous Poisson process likelihood:

p(Rij, I', {m1, my}|d)

Nevenls‘
) [ [T pabim®,
k=1

mNRm®, m5f>)]
x eXP[Z A,-j]p(wr)p(r), 23)

)

where p(d®|m®, m{) denotes the likelihood of the data for
event k given component masses, marginalized over all other
parameters of the system, p(R;|I") represents the GP prior on
the bin heights and ); denotes the expected number of
detections in bin #j, folding in selection effects.

The GP prior on the (log) of the bin heights takes the form

pog RyI") = N (log Ryl log(p + pp), ) (24)

where N (x|f, $3) denotes the multivariate normal probability
distribution function on x with mean [ and covariance
3. Meanwhile, p is an overall scale factor and p; =
logp(logm, ;, logm, ;) is fixed to either the power-law or
flat-in-log shape discussed in Section 4. Note that the point
(logm, ;, logm, ;) denotes the center of the ijth bin. Finally, X
is a covariance matrix. We use a squared exponential kernel for
the covariance matrix, and parameterize > as

Y = (1 —f)0'2 CXp[—LAZ log mijkl:l +f025ijkl~ (25)
ki 272

For numerical stability, the covariance X includes some
fraction f < 1 that is white and uncorrelated; the precise value
of f does not affect the results and is fixed to f= 0.01
throughout the analysis. The square of the Euclidean distance
between the centers of the bins (logmy;, logm,;) and
(logmy , logms;) is denoted A?log mij. At zero separation,
the variance is o°. The correlation length scale is set by the
parameter 7. Lastly, 6 is the Kronecker delta function.

In summary, the GP parameter set I" consists of the free
parameters j, o, and 7, and the fixed parameters p; and f.
For the prior on these hyper-parameters (written p(I') in
Equation (23)), we take a broad Gaussian prior for & with mean
0 and standard deviation 10 and a half-Gaussian prior on o > 0
with mean O and standard deviation 1.

We take a Gaussian prior for log 7. The mean and standard
deviation of the Gaussian are chosen to place the width of the
smallest mass bin 20 below the mean and the width of the mass
range considered (3 M—150 M) 20 above the mean. Thus the
prior constrains the correlation length of the rate in log-mass to
be typically longer than one bin, but shorter than the entire
mass range. The correlation length 7 is poorly constrained by
the data with only 10 detections, and the recovered posterior is
very similar to the prior. We stress that, in the limit of a large
number of detections, the likelihood will dominate the GP prior
and the posterior on the bin heights will become independent of
these prior choices.

To evaluate the posterior of Equation (23) we also need the
expected number of detections ); in bin jj. To do this we
evaluate the sensitive spacetime volume in the ijth bin, (VT);,
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so that

Aj = Ry(VT);. (26)

The sensitive volume was introduced in Section 3, and is
calculated from the detection probability Py by (Abbott et al.
2019b)

1 4V,
1 +zdz
where Ty, is the observing time. This assumes that the merger
rate is constant (non-evolving with redshift) in comoving

volume and source-frame time, and that the detector sensitivity
is constant in time. The average sensitive volume in bin ij is

Mmii1/2 mj /2
wry = [
mi—1/2

m;j_1/2

VT (my, m2) = Ty [ PasConr, ma, 2) d, @)

VI (my, mpy & dmz - g
my mp

where the integral boundaries are the edges of the bin.

Consistent with the other analyses in this work, we calculate
Pyt (my, my, z) under the assumption of a single-detector S/N
threshold. Abbott et al. (2019b) found this approximation to
VT (my, m,) to overestimate the sensitive volume by a factor of
~1.6 relative to the volume calculated by injections into the
detection pipeline. This factor of ~1.6 between the semi-
analytic sensitive volume and the injection-estimated volume is
fairly constant across the mass space. We therefore divide our
value of (VT); by 1.6 to match the results of injections. We
further assume that the total (VT') has a (Gaussian) 1o error of
18% (arising from an amplitude calibration error of ~6%) and
marginalize over this uncertainty, split evenly between the
mass bins (Abbott et al. 2016a).
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